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ISOMETRIC IMMERSIONS OF MANIFOLDS WITH
PLANE GEODESICS INTO EUCLIDEAN SPACE

SING-LONG HONG

1. The main theorems

The object of this note is to prove the following

Theorem 1. Assume that (a) M is an n-dimensional (n > 2) connected
Riemannian manifold, (b) {: M — R**? is an isometric immersion of M into
an (n + p)-dimensional Euclidean space R**?,p > 0, and (c) every geodesic
on M is locally a plane curve, that is, if o: (a, B) — M is a geodesic on M, then
for every te (a, B), there exists an open interval I in (a, B) containing t such
that fog(l) lies on a certain plane E,. Then either f(M) is an open subset of an
n-dimensional plane or M is L-pinched, i.e., its sectional curvature K satisfies

IA<K<A

for some positive number A.

If M is also l-pinched, then we have

Theorem 2. Assume that (a), (b), (c) of Theorem 1 hold, and that M is
l-pinched. Then M has positive consiant sectional curvature, if one of the
following conditions also holds:

MW 1<p<in+2,

(2) nis prime,

(3) there is m e M such that the sectional curvature K of M at m satisfies
14’ < K £ A’ for some positive A’.

Let {,> denote the metric tensor in R**?. Let X, B(X,, X,), 2B(X;, X;) =
2B(X;,X;), 1 <izj<n, be unit vectors in R**? with the following
properties:

(i) f1<i#j<n, then{X,, ---,X,, B(X;, X,), 2B(X;, X;) = 2B(X;, X,)}
is orthonormal;

(i) foreveryi %= j, 1 <i,j<n, (BX;X:),B(X;,X;)> =1%;

(i) <B(X;,X,), B(X;, X)> =0, for i, j, h differerntand 1 < i,j, k, k < n.

Let ¢ be a fixed positive real number, and m be a fixed point of R**?. By
identifying points of R**? with their position vectors, the set of all points
olx,, - - -, x,) defined by
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forreal x;, - - -, x, with 0 < c(x? 4+ --- + x3)"2 <2z and 0, ---,0) =m
is an n-dimensional compact connected submanifold of R**? with respect to
the natural differentiable structure. We shall call it an n-dimensional 2-sphere
with radius 1/c with respect to the system {X,, B(X;, X )}, or, simply, an n-
dimensional Z-sphere.

Theorem 3. Let M be an n-dimensional (n > 2) Q2-sphere with radius 1/c
(¢ > 0). Then M has constant sectional curvature 1c®, and geodesics on M are
circles with radius 1/c.

It follows from Theorem 3 that an Q-sphere satisfies the assumption (¢) of
Theorem 1.

Theorem 4. Assume that (a), (b), (¢} of Theorem 1 and that M has posi-
tive constant sectional curvature. Then (M) is either an open subset of an
n-dimensional sphere or an open subset of an n-dimensiornal 2-sphere.

2. Reduction of the assumptions (a), (b), (¢) of Theorem 1

Assume that (a), (b), (c), of Theorem 1 hold. In this section we shall con-
sider some purely local properties of M. Let U be an open connected neighbor-
hood of a point m, ¢ M on which f is one to one. Since the following is a
local argument, we shall identify x ¢ U with f(x). For any vector fields X, Y, Z
tangent to M, we have the formulas of Gauss and Codazzi:

nor ¥ v (V(Y,2)) — V(DyY,Z) — V(Y,D32)
= nor Po(V(X, 2)) — V(DyX,Z) — V(X,D:2Z) ,

where Iz, Dy denote the covariant differentiations with respect to the Eucli-
dean connection of R**? and the Riemannian connection on M, respectively,
and nor denotes the normal component. V(X,Y) is the normal component of
F xY and symmetric.

Lemma 2.1. Let X, Y be two orthonormal vectors in the tangent space
To,(M)atmeU. Then {V(X,X),V(X,Y)> = 0.

Proof. 1If V(X, X) = O, there is nothing to prove. So we assume V(X, X)
#0. Let ¢: (—r,r) — U be a geodesic with ¢(0) = m, T(¢(0)) = X, where
T denotes the tangent field of ¢. By (¢) of Theorem 1, we may assume that ¢
{ies on a plane E. Thus both 7T and V7 = DT 4+ V(T,T) = V(T,T) are
parallel to £ so that ¢(t) = m + a(1)X + b))V (X, X) for some differentiable
functions a, b. Therefore F (V(T,T)) = V7T = a"(HX + &""(OV(X, X).
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Let Z be a vector field tangent to M with Z(m) = Y. Then (V(X, X),V(X,Y)>
= W(T, D), VT, 2)>(m) = VT, T,V Z>(m) = ¥ ,(V(T,T), Y (m) +
VT, 1),V Zy(m) = T<V(T, T), Z>(m) = 0, since (V(X,X),Y> =0 and
VT, 1),Zy=0.

Lemma 2.2. Let X,Y be two orthonormal vectors in the tangent space
T,M) at meU. Then (V(X,X), VX, X)) =<VZ, V), VX,Y) and
VX, X)L VX, X)) =VX, X, VX, Y + XVX,Y), VX, Y)).

The proof of this Lemma follows directly from Lemma 2.1.

Lemma 2.3. For any two unit vectors X, Y in the tangent space T,(M)
arme U, we have {V(X, X), V(X, X)) = V(Y,Y), V(Y,Y)>.

This Lemma follows immediately from Lemmas 2.1 and 2.2.

By virture of Lemma 2.3 we can define a differentiable function g on U by

2.1 gm) = VX, X), VX, X)), X : a unit vectof in T,,(M).

Lemma 2.4. The function g defined by (2.1) is constant on U.

Proof. Letme U and X,, ---, X, be an orthonormal basis of the tangent
space T,,(M), and ¢: (—r,r) — M be a univalent geodesic on M with ¢(0) = m
and T(¢(0)) = X, where T denotes the tangent field of . Let Y, -- ., Y, be
parallel fields along ¢ with Y, (m) = X, for i=1,...,n. Then Y,---,7,
are orthonormal along ¢ and Y, = T.

Let ¢ be the Fermi coordinate map from an open neighborhood 4 of ¢ onto
an open neighborhood W of the origin of a Euclidean space R®, that is, for
(x5 - - -, x,) € W we have

,QS—I(x], . "xn) = EXP,(;I) (Z?:zxiyi(a(xl))) ’

where Exp,;, denotes the exponential map at ¢(x). Let Z,, - - -, Z, denote the
coordinate fields on A4 with Z,(6(x)) = Y (6(x)). Let X, Y denote the restric-
tions of Z,, Z, to the set of points Exp, ., (x,Y,(¢(x,))), respectively. Since
each x,curve is a geodesic parameterized by the arc length, D;Y = 0 and
(Y,Y»=1. By direct computations we obtain Y<{(X,Y) = DX, Y) +
X, DY) ={DyX, Yy =3X(Y,Y> =0, since DY = DX (note that
Z,, Z, are coordinate fields). Thus <X, Y is constant along x,-curves, and we
have (X,Y) = 0 since <X,Y)» = 0 on ¢. Hence by Lemma 2.1 we have
VX, Y),VI,Y))> =0. Since (D:X)m) = (DxY)(m) = (D;Y,)(m) =0,
Codazzi equation implies that

(nor VXV(Y, Y))(m) = (nor V' V(X,Y))(im) ,
so that

FzV(,Y), VY, Y)ym) = FyV(X,Y), V(Y,Y))(m)
= —(V(X,Y),F:V(Y,Y)(m) .
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If V(X,, X,) = 0, thenFxV(Y, Y), V(Y, Y)>(m) = 0. Suppose that V(X,, X,)
#0. Then by (c) of Theorem 1 there exists a positive real number s such that
the curve Exp,, x.X,, for x, e (—s, 5), lies on a plane, i.e., there are different-
iable functions a, b such that Exp, x,X, = m + a(x,)X, + b(x,)V(X,, X,) for
x, € (—s,5). Thus

FV(Y,Y), VY, Y)H(m) = —(V(X,, X)), Ty VY, Y)(m))
= —V (X, Xp),a"(0)X, + b OV (X,, X))
=0.
So we always have X,g = X;{V(Y, ), V(Y,Y)) =2y V(Y,Y), V(Y, Y)(m)
= 0. Similiarly, we have X,g = O for i = 2, - . -, n. Hence the Jacobian map
8, of g is zero at m. Since m is arbitrary, g, = 0 on U. Thus g is locally con-
stant, and the assertion of the lemma follows from the connectedness of U.
Lemma 2.5. Suppose that g = ¢ on U with ¢ > 0. Let ¢: (--r,r) — U

be a geodesic on U with tangent field T along ¢. Suppose that T(¢(0)) = Z is
a unit vector. Then for t € (~r, r) we have

o(t) = 0(0) + ¢ (Ssinec)Z + ¢l — cose)YV(Z,2) .

Proof. From the assumption it follows that T is a unit vector field along
. By the definition of g we have (V(T, T), V(T, T)> = ¢*. Thus T and V(T, T)
are linearly independent along ¢. For t e (—r,r) let E, = {g(t) + xT(c{8)) +
YV(T,T)o(t)) e R**?: x,y reals}. Since g is locally a plane curve, E, is locally
constant and is constant on (—r, r) by the connectedness of (—r, 7), so that

o) = 0(0) + a(0Z + b(OV(Z,2)
for t € (—r,r) and some differentiable functions a, b. To compute a, b we have

Te®) =dZ + b¥(OV(Z,2),

V(T,T)e®) = Fr:TXNe(®) = a”"(DZ + D"(OV(Z,2) ,

TV (T, D)a(®) = a""(DZ + b"(OV(Z,2) .
Since T and V(T, T) are linearly independent, V'V (T, T) is a linear combina-
ton of T and WV(T,7). But F, VT, 1), T)=— VT, 1, VT =

—<V(T,D),V(T,T)) = ~c® and F V(T,1),V(T,T)) = {:TV(T,T),V(T,T))
= 0. Thus V.V (T, T) = —c*T, and we have the differential equations

a’() + cta(t) = 0, () + b)) =0.

Solving these differential equations with the boundary conditions: a(G) = 5(0)
= bp’(0) = a”(0) = 0, a’(0) = b”(0) = 1 gives

a(t) = ¢ 'sinct , b{t) = ¢~*(1 — cos ct) ,
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which prove Lemma 2.5.

Lemma 2.6. Let X,Y,Z be three orthonormal vectors in the tangent space
T,.(M)atmeU. Then

VX, X), VY, 2y + AVE, V), VX, 2)>=0.
Proof. By Lemma 2.2, for any real § we have ‘

VX, X),V(X, X)) =<V(X,X),V(Ycosf + Zsin8,Y cos@ + Zsin )
+ 2{V(X,Y cos§ + Zsinf),V(X,Y cosd + Zsing)> .
Differentiating the above equation with respect to 4 at § = O thus gives the
desired result.
Lemma 2.7. Assume that g =c® on U with ¢ > 0. Let X, Y be two

orthonormal vectors in the tangent space T,(M) at m ¢ U with zhe following
property:

2.2) VX, X),V(¥,2) =0, if X,Y,Z are orthonormal in T, (M).

Then either V(X,Y) =0 or (V(X,Y), V(X,Y)> = 1

Proof. Suppose that V(X,Y) == 0. Choose an orthonormal basis X, - - -, X,
of T,.(M) such that X, = X, X, = Y. Since the exponential map Exp,, at m
is a local diffeomorphism, there is a positive real number s such that Exp,, is
a diffeomorphism from

(TraxXexd+ -0 + x5, < s}
onto an open neighborhood of m. By Lemma 2.5 we have
Exp, (T, x:X) =m 4+ (en~ (siner) T2, x,X
+ (en™*(1 — cos en)V (i x: X5 130 XX, 5

where r = (x} + --- + 2% Put a = (cr)7'sincr, b= (cr)™*(1 — cos cr).
Then forj =1, .- ., n we have
d)ox; = (Bajox;) T i, x:X; + aX; + (@b /ox;) Trioy xxi V(X X3
+2b 37, xV(X,, Xj) s

0 d 0a i
g 94 X, +2%x +4%2 y 2 VX, X
Va/ar.;a 2 zZ!x i 2ax 46’x1 ¢Z=:1x ( 1 i)

n

2
+ 20 3 2x VXX + 26V(X, X))
ox?t k=1

Choose a positive real number x such that 0 < x* < s and 1 — coscx %= 0.
Atx, =x; = -.- = x, = 0, x, = x, we have
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oalox, =adbjox; =0, for i=1,3,.--,n;
dajox, = (cos cx)/x — (sin cx) /(cxY);
8b/ox; = —2(1 — cos cx) /(c*x®) + (sin cx) /(cx®);
da _ coscx  sincx | @b _ _ 2(1 —coscx) n sin ¢x _

b
oxt X cx? ox; cixt cx?

Let Z; = (3/3x)(Expp xX,), i = 1, - -+, n, and B = (7,,,,(0/0x))(Expp, xX,).
Then we have

2.3) 2z, =S0cxy 20 —-cSD) iy yvy for i=1,3,---,n;

cx cx
(2.4) Z, = (cos ¢x)X, + (c™'sincx)V(X,, X,) ;
B (Coscx _ sincx )Xz n ( sincx 2(1 — cos Cx))V(Xz,XZ)
x cx? cx it

2.5)

i 2(1 — cos ¢cx) V(X, X)) .
cixt

Recall that for i,j = 1, - - -, n with i % j we have {V(X,, X)), V(X;, X;)> =0.
and ¢ = (V(X;, X)), VX, X)) = VX, X)), VX, X)) + VX, X)),
V(X,,X,)). From (2.2) it follows that <V(X,,X),V(X;, X)) =0, for
j —_ 3, vee, R

Applying the above relations to the computation of inner products of vectors
given by (2.3), (2.4), (2.5), we can easily obtain

(2.6) {B,Z;» =0, for j=1,3,.-..,n;

{B,Z,> = 1/x — (sincx-cos cx) [(cx?)

2.
2.7 —(4(1 — cos ¢x) sin cx)V(X,, X,), V(X,, X)) /()

{B,B> = 1/x — (2sin cx-cos cx) /(cx®) + (sin® cx) /(c*x")
2.8) + 16(1 — cos cx)XV(X,, X,), V(X,, X)) /(c'x)
— 8((1 — cos cx) sin cx){V (X, X,), V(X,, X,)> /(> ;

2 __ 2
2.9 <zZ,zy=mex A =S ipyix X)), VX, X)) ;

cx® c'x
(2.10) {Z,Zy=1;
.11 (Z,Z> =0, for j=1,3,---,n.
On the other hand, according to the Gauss formula we have B = 37, a,Z, +

V(Z,2Z,), for some real numbers q,, - - -, a,. From (2.6), (2.7), (2.10), (2.11)
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it follows that B = (B, Z,>Z, + V(Z,,Z,), so that (B, B> = (B, Z,)’ +
W(Z,Z),V(Z,,Z)y. Set A= 2,/{Z,2Z)>". Since g=c%, V(Z, Z),
V(Z,,2,)) = {Z,,Z,)XV(4, A),V(4, A)) = ¢*Z,, Z,>*. Therefore

(2.12) (B,B)> = (B, Z,Y* + KZ, Z>* .

Substituting (2.7), (2.9) in (2.12) and comparing the resulting equation with
(2.8) we can easily obtain

16(1 — cos cx)XV(X,, X)), V(X,, X,)> [ (c'x?)
= 32(1 — cos cx))(V(X,, X)), V(X,, X))>*/(c**)
+ 8(1 — cos ex)(sin? cx){V(X,, X)), V(X,, X)) /(c*x)

which can be simplified to 4(V(X,, X)), V(X,, X,)> = ¢?, implying (V(X,7Y),
VX, Y = i

Lemma 2.8. Suppose that g = ¢ on U with ¢ > 0. Then for any two
orthonormal vectors X, Y in the tangent space T,,(M) at m ¢ U we have

Moreover, if X,Y are orthonormal vectors in T,,(M) withQ< (V(X,Y),V(X,Y)>
(i, then there are unit vectors X,, X, such that X, X,, X, are orthonormal
and V(X, X)) =0, VX, X), VX, X)) = i

Proof. Suppose that X, Y are two orthonormal vectors in T,,(M) such that
V(X,Y)# 0and <V(X,Y), V(X,Y)) % 1 Let S denote the set of all unit
vectors in T,(M) which are orthogonal to X. With respect to the natural
topology on S, the function F defined by

F(Z) = (V(X,2),V(X,Z), for ZeS

is continuous on §. Since S is compact, F takes a minimum, say at X, and a
maximum, say at X.,.

If X, X,, Z are orthonormal, then, for any real §, X, cos§ + Zsinfd isin S.
Let h(6) = (V(X,X,c0s8 + Zsing), V(X,X,cos§ + Zsing)>. Then 4 takes
a minimum at § = 0, #(0) = 0, i.e., (V(X, X)), V(X,Z)> = 0. By Lemma
2.6 we have <V(X, X), V(X,, Z)> = 0. Consequently, X and X, and similarly
X and X,, have the property (2.2). Since F(X,) > F(Y) > 0, it follows from
Lemma 2.7 that F(X,) = 3¢ > F(Y). By assumption we have F(Y) < ic.
This proves the first assertion. Also F(X,) < F(Y) < 1c¢. According to
Lemma 2.7 we have V(X, X)) = 0.

Clearly, X, X, are linearly independent. Let X; = X, — {(X,, X,>X,. Then
X3 X £ 1, X)X, Xy e S and V(X, X,) = V(X, X)), so that

FX,) = VX, X)), V(X, X)) = (X3 XDF(X,/<{X3, X;)V°)
< X XPF(X,) < F(X) .
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Thus (X, X;> = 1, and hence (X, X,> = 0. This proves Lemma 2.8.

3. Proof of Theorem 1

According to Lemma 2.3 we can define a real function G on M by the
second fundamental tensor V' as follows: At me M,

(3.1) G(m) =<V(X,X),V(X,X), for a unit vector X in T',(M) .

By Lemma 2.4, G is locally constant. Since M is connected, G is constant on
M. Note that G is nonnegative.

Case 1: G = ¢* for some constant ¢ > Q. Let me M, and X, Y be two
orthonormal vectors in the tangent space T,(M). Let K(X A Y) denote the
sectional curvature of the plane spanned by X and Y. The Gauss equation
implies

B3.2) KXAY)=VXX),V(Y.Y)) ~VX.Y),VXTY) .

By Lemma 2.2 we get
= ~3VX,Y),V(X,Y) .
According to Lemma 2.8, (V(X, Y),V(X,Y)> < ic*. So we have 1c® <
KX ANY) <A
Case 2: G = 0 orn M. Consider f locally. If X is a vector field tangent to

M, then V(X,X) = 0. Hence f(M) is an open subset of an n-plane, since M
is connected.

4. Proof of Theorem 2

By assumption there is a positive number A such that the sectional curvature
K of M satisfies

4.1) 0<i4<LK<4.

Let G be defined (3.1). Then vit follows from Lemma 2.4 that G is constant on
M, since M is connected. For m ¢ M and orthonormal vectors X, Y in T,(M),
the sectional curvature K(X A Y) of the plane spanned by X and Y is
KX AY) = VX, X, VY, V)> — VX, Y), VX, V)
=GC—-3VX,V),V(X,Y)) .

Thus K(X A Y) > 0,G = ¢* for some positive constant ¢, and (V(X,7Y),
V(X,Y)) < ic* according to Lemma 2.8.
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For m ¢ M and unit vector X in T,(M), define
X)={YeT,M):V(X,Y)=0}.

Then p(X) is a vector subspace of T, (M) over the real field R'. For Y e p(X),X
and ¥ — (X,Y)>X are orthogonal. By Lemma 2.1 we see that 0=
P(X,X), V(XY =X, Y)X)) = X, Y VX, X), VX, X)) = —cXX,Y),
so that Y and X are orthogonal.

. Let a(X) = RX @ p(X). Let a(X)* denote the orthogonal complement of
a{X) in T,(M), and S(X) the set of all unit vectors in a(X)+. Then we have
the following lemmas:

Lemma 4.1. If Y e S(X), then (V(X,Y), V(X,Y)) = ¢ and {V(X, X),
V(Y,Y))> = &c. Moreover, if Y, Z are two orthonormal vectors in S(X),
then (V(X,Y),V(X,2)) = 0.

Proof. Since V is bilinear, the real function F on S(X) defined by

F(W) = (V(X, W), V(X,W)>, for WeSX),

is continuous on the compact set S(X) with respect to the natural topology of
S(X). So F takes a minimum at some T e S(X). Moreover, X, T have the
property (2.2). In fact, let X, T, W be three orthonormal vectors in T,(M).
We consider the three posibilities:

Case 1: W e S(X). Then T and W are orthonormal vectors in S(X). Thus
the real function

h@) =<V(X,Tcost + Wsing), V(X,Tcos§ + Wsin8))

of real variable ¢ takes a minimum at § = 0, so that #(0) = 0, that is,
VX, 1, V(X,W)> =0. According to Lemma 2.6, we have {(V(X,X),
VT, w)> =0.

Case2: Wep(X). Then V(X,W)=0. By Lemma 2.6 we have
VX, X), VT, W)y =0.

Case 3: W = aW, 4 a,W,, where W, W, are unit vectors in a(X), a(X)+
respectively and a,,a, are real numbers. Since X,W are orthonormal,
W, e p(X). By Cases 1 and 2 we have <V(X,X), V(T,W)>=0,fori=1,2.
Hence <V(X, X), V(T,W)) =a, VX, X), V(T,W)) + alV(X, X), V(T,W,)>
= 0.

According to Lemma 2.7, either V(X,T) =0 or (V(X. 1), VX, D> =
ict. Since T eS(X) C a(X)L, VX, T), V(X, T)) = }c*. Therefore for
YeS(X) we have (V(X,Y),V(X,Y)) =2 VX, T),V(X,.T)> = Lc?. By
Lemma 2.8, we get (V(X,Y),V(X,Y)> = ¢ So from Lemma 2.2 follows
VX, X),V(Y,Y)) = i

Now, if Y, Z are two orthonormal vectors in S(X), then, by the first part
of this Lemma, VX, + 2)/v2), VX, + 2)/v/2)> = i,
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VX, VX, YY) =VX.2),V(X,2))» = 1ct. So we have (V(X,Y),
V(X,2Z)) = 0.

Lemma 4.2. If W is a unit vector in a(X), then V(X,X) = V(W, W).
Proof. Let W = aX + bY, where Y is a unit vector in p(X), and @, b are
real numbers. Then & + b* =1 and V(X,Y) = 0. By Lemma 2.2 we have
WX, X), VX, X)) =<V(X,X), VY, Y) =V, Y), VY, Y)>, so that
VX, X)=VX,Y),and VIW, W) = VX, X) + V(Y ,Y) = V(X, X).

Lemma 4.3, If Y ¢ S(X), then a(Y) C a(X)*.

Proof. LetaZ + bW be a unit vector in «(Y), where Z, W are unit vectors
in a(X), a(X)* respectively, and a, b are real numbers. Then, by Lemma 4.2,
we get V(Y,Y) = V(aZ + bW,aZ + bW) and V(X, X) = V(Z,Z). Accord-
ing to Lemma 4.1, we have

3¢ = VX, X), VY, Y)) = VX, X),V(aZ + bW,aZ + bW))
=a¥V(X,X), VX, X)) + 2abV(X, X), V(Z, W)
+ VX, X), V(IW, W)>
= dic? + 2ab{V(Z,2),V(Z, W) + }b*c® = a’c* + bic*.
The last equation follows from Lemma 2.1. Since & + &* = |,a = 0. Thus

we see that (YY) C a(X)L.
According to Lemma 4.3 we can decompose 7 ,(M) into a direct sum

(4.2) T,M) =aX)® - @ alX,)
for some unit vectors X, ---,X, in T,(M) such that a{X;) < a(X )+ for
I<i=j<k

For each unit vector X e T,(M), let S(X) denote the dimension of the vector
subspace a(X). Let H(m) denote the mean curvature vector on M at m, that
is, if ¢,, - - -, e, form an orthonormal basis of T,,(M), then H(m) = (V(e, ¢e,)
+ -+ + Ve, e,))/n. The mean curvature vector H(m) is independent of
the choice of the basis of T,,(M). We choose an orthonormal basis Y, ---, Y,
of T,(M) such that ¥, =X, Y, e a(X) for i < 8(X), and Y; € a(X)+ for
j > B(X). Then, by Lemma 4.2, V(Y,, Y;) = V(X, X) for { < 5(X). Accord-
ing to Lemma 4.1, (V(X, X), V(Y,;,Y,))> = ic¢* for i > B(X). Hence

¥V (X, X), Hm)> = (V(X, X), Zr. VY, Y))
= B(X)-¢& + i(n — BX))c? = Inc® + /(X)) - .
Let S denote the set of all unit vectors in 7,,(M) with respect to the natural
topology. Since n > 2, 5 is connected. However, the function (V(X, X), H(m)>

of X e S is continuous on S. So the integral function g(X) is constant on S,
and we can define a real function B on M by

B(m) = (X)), for m ¢ M and a unit vector X in T,,(M).
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Then B(m) satisfies the relation
nV(X, X), Hm)> = inc® + {B(m)c?,

where X is a unit vector in 7,{(M). Since both V and H are differentiable, B
is continuous on M. The connectedness of M implies that the integral function
B is constant on M. Let a denote this constant.

Case 1: a=1. Then for any m € M and any unit vector X in T ,(M), we
have p(X) = 0. Thus, if X,Y are orthonormal in T, (M), then Y ¢ S(X) C
a(X)-. By Lemma 4.1, (V(X,X),V(Y,Y)) = 3¢, {V(X,Y),V(X,Y) =
1c?, so that K(X A Y) = 1c?, which implies that M has positive constant
curvature ¢,

Case2: a=n. Then Y e po(X) for any me M and two orthonormal
vectors X, Y in T,(M). Thus V(X,Y) = 0. By Lemma 4.2, we also have
V(X,X) = V(Y,Y). Hence the sectional curvature K(X A Y) = ¢?, and the
sectional curvature of M is ¢°.

Case3: 1<a<n LetmeM,andT,(M) =a(X)D.---Da(X,)bea
decomposition of T,(M) into a direct sum as (4.2). Then each a(X,), for
i=1,...,k, has dimension a, so that » = ak, which implies that n is not
prime and k > 2. Since a > 2, we can choose a unit vector Y € p(X;). More-
over, X, Y are orthonormal, and V(X,, X,) = V(Y,Y) by Lemma 4.2. Hence
the sectional curvature K(X, A Y) = ¢%. On the other hand, X, and X, are
orthonormal, and X, € S(X,). It follows from Lemma 4.1 that K(X, N\ X,) =
1, which together with K(X, A X) = ¢?, implies that case (3) in Theorem 2
can not happen, since there is no half-open interval (ix,x] which contains
the closed interval [Lc?, ¢*].

Let e, .-+, ¢, be an orthonormal basis of T,(M) such that X, = ¢, and

€r.a411 = '3 €r 5q fOrm an orthonormal basis of a(X,,,) for r=0, .-,k — 1.
Suppose that there are real numbers b,, b,,4a;,i = a + 1, - - -, n, such that
(4.3) S eaaV(X,e) + b VX, X)) + bV(X,,X,)=0.

Taking the inner product of (4.3) with V(X,, X,) we get b, + £b, = O by
Lemmas 2.1 and 4.1. According to Lemma 4.2, V(X,, X,) = V(e;, e;) for
a+1<i<2a Hence (V(X,,e), V(X,, X)) = ¥V (X,,e,), Ve, e)y =0
for a +1<i<2a Fori>2a+1, e;eS(X,). Also, X, ¢ S(X,), and by
Lemmas 4.1 and 2.6 we have (V(X,,e),V(X,;, X,)> =0 for i > 2a + 1.
Taking the inner product of V(X,, X,;) with (4.3) gives b, + b, = 0. Thus
we have b, + +b, = 0 and b, + b, = 0, so that b, = b, = 0.

Fora+ 1 <, e; e S(X)). By Lemma 4.1, (V(X,, e;), V(X,, ¢;)> = 0 for
a+1<i#jgn ThusV(X,,e,.), -, V(X, e,) are orthogonal and are
nonzero normal vectors according to Lemma 4.1, so that V(X,,€,,,),- -,
V(X,, e, are linearly independent. Hence g, = Ofori=a + 1,:--,n.
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The above argument shows that V(X,,e,..), -, V(X,, €,), V(X,, X)),
V(X,, X,) are linearly independent. They are normal vectors, and p > n — a
+ 2. Now n = ak and &k > 2, so that @« < in, which implies p > in + 2.
Consequently under the assumptions of Theorem 2 case (3) can not happen
thus proving Theorem 2.

5. Some properties of vector subspaces of R**?

Consider R**? as an (n + p)-dimensional real vector space. Let d be a
positive real number, and X, L(X;,X;) =L(X;, X)), i,j=1,---,n be
vectors in R**? with the following properties:

(I) if 1<i#j<nthen {X, - -, X,,d"'L(X;,X),2d"'L(X;,X;) =
2d'L(X;, X,;)} is orthonormal ;

(I1) forl1 €i#j<n AX,X,), L(X;,X;)) = 3d%;

(1) for 1 <i,j,h, k < n and different /, j, A, L(X;, X;) and L(X,, X))
are orthogonal.

Let E denote the n-dimensional subspace generated by X, - -+, X,. Extend
the system {L(X,, X;)} to the unique bilinear map L: E X E — R**?

L(Zra:X, 27, b;X) = fis1 ab; L(X;, X,) ,

for real a;, b;. Then L is symmetric.
Lemma 5.1. Let X,Y be two orthonormal vectors in E. Then

LX,X),LX, X)) =4  (LX,X),L(Y,Y)) =0,
ALX, X), L(Y,Y)) = 3d*, <(LX,Y),LX,Y)) = {d.

PrOOf. Let X = Z;;IaiXi, Y = 21’:;1 bv.Xz Then Zz(;la';f.__ 1’ Z?:I bf: 1’
r,a;b; = 0. We compute:

LX), LX,Y)> = 3 ab,apbKL(Xs, X,), LXn, X

1,5, 0,k=1
=& 3 (ab)’ + 3@ ¥ abuanb,,
i=1 e

+ id ¥ (ab,) + L& 3 ab,a;b,
i=j i=

— ;;—dZ(i; aébi>2 +id 5 Zl Bt = 1 .
By a similiar computation, we can obtain the other three equations.
Lemma 5.2. Let X, Y, Z be three orthonormal vectors in E. Then
LX,X),L(Y,Z)) = {L(X,Y),L(X,2)) = 0.
This lemma follows from Lemma 5.1.
Lemma 5.3. If X,Y,Z, W are orthonormal in E, then {L(X,Y),

L(Z,W)) = 0.
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Proof. ByLemma5.2,{L(X,Y),LUZ + W)/V/2,(Z + W)/ 2)> =0,
which implies (X, Y),L(Z, W)> =0 since (LX,Y), L(Z, 2)> =
IX, ), L(W,W)> =0.

From Lemmas 5.1, 5.2, 5.3 we obtain

Proposition 5.1. Lez e, - -,e, be an orthonormal basis of E. Then

(I) forl<iij<n, e, --,e,,d 'Lie;,e;), 2d ' Lie;, e;) = 2d™'LAe;, €;)}
is orthonormal ;

(II) for 1 <i#j<n, Lleye), Lles ey = id;

(1) for 1 < i,j,h,k < n and different i, j, h,L(e;, e;) and L(e,,e;) are
orthogonal.

Proposition 5.2. Let e, ---,e, be an orthonormal basis of E. Then
{ey, -, e} U{L(es,e;): 1 < i < j < n}isalinearly independent sysiem.

Proof. Suppose

2t18:€; + Dlcicisn Gillee) = 0

with real a;, a;;. From (I) of Proposition 5.1 we see that all a; must be zero.
Moreover, if we take the inner product of L(ey,e;), & < k, with the above
equation, then we get a,, = 0, so that > 7., a;,L(e;, e;) = 0. Taking the inner
product of L(e,, e,) with the above equation yields

Z?—l aii = __ahh’ fOl‘ h = 1, vee, A,

which imply a;; = Ofori = 1, - - -, n. Hence we complete the proof.

6. Proof of Theorem 3

We identify points in R**? with their position vectors, and use | || to denote
the norm. “ o

Let M be an n-dimensional (n > 2) £2-sphere with radius 1/c (¢ > 0) with
respect to the system {X;, B(X;, X;)}. Let E* denote the n-dimensional sub-
space generated by X, - - -, X,,. Define a bilinear map L: E* X E* — R**? by

(Xt aX, 25 b;Xy) = 27,0, 00;B(X;, X)),

for real a;, b;. Then L(X,;, X;) = B(X,, X;) and L is symmetric. It follows
from the definition of {2-sphere that there is a fixed point m, € R**? such that
M is the set of all points 4(X):

A(X) = sinc|[X||X I_COSC”X”LX,X,
@ =m+ =t —axp &%

fO0<c|X| <2z, XeE",

AX) = m,, fX=0.
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Let V denote the second fundamental tensor of M. At first we prove the
following lemma.

Lemma 6.1. Let X ¢ E® with 0 < c||X|| < 2z. Then there is an ortho-
normal basis ey, - - -, e, of the tangent space T , x,(M) at A(X) with the follow-
ing properties:

D) if 1<i#j<n, then {2c7W(e; e;) = 2c7V(e;, €;), ¢ Ve, €,)} is
orthonormal and {V(e;, e;), V(e;, e;)> = }¢*;

) for 1 L i,j,hk < n and different i,j, h, Vie;, e;) and Vie,,e;) are
orthogonal.

Proof. LetY,=X/)jX]. ChooseY,,---,Y,suchthatY,,---,Y, form an
orthonormal basis of E*. Then, forY = 32 ,y,Y; and 0 < ¢| Y| < 2z, we have

A(Y) = mO + i{{lﬁ%ﬁ_ :L; }’z 2 + l___‘%_cnj_l__y_l_ JZ y‘l.yJL(Yu Yj)

Consider (y,, ---,¥,) as coordinates of M. Fcri,j=1,---,n, 8 ||Y||/dy; =
yi/iYi,

F d sinc||Y|\ 4 SinciYy
a; A (ayj clY] ) £ Yy
g 1—cosc]l Iy &
+(ayJ CIYT >n§=1y"y"L(Y“’ Yo
2(1 —cosc||Y)) ZY LY, Y,
ciY|f

0/5%' (A(Y)) ( 32 Sln C H YH) élyhyﬂ

ay:0y; ¢l
+(i smcHYH) (_a_ smc]jYH)
y; clY] ay; ey /7
& l—coscHYH) LY. Y
+ (3yi3yj CIYT w4 1)’);)’1: (Y, Y
g 1— coscHYH)
2(_" L—coscl¥l) s~y 1(v,, Y
A, TarE )R
a 1— coscHY\I)
2( 1-coscj¥y LY, Y
T e ) &Y
2(1 —cosc||Y|) LY, Y, .
c| Y
Calculating the last two equations by chain rule at y, = [ X}, y,= -+ =

¥. = 0, we get
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0 _ sinc | X] 2(1 — cosc || X . .
A X = Yz 1s i/ = 2: M) 3
8yi( (X)) X + Il L(Y,Y) i n

-a%-(A(X)) = (cosc | XY, + Ginc || XDL(Y,, Y,);

Va./aylgi—(A(X» = —c(sinc || X DY, + clcosc | XIDL(Y,, Y ;

d __ fcosc||XIi sin ¢ || X ||
aayl—A = - 1
Va ayf( ) ( X clI X )Y

2 sinc | X|| 2(1 — cosc || X|)
+ — L(Yn Yi) H
( X1 ool X )

i=2,---,1;

21 —coscHXH)L(yi,yj), 2<i#EjLng

d
Va/ang};;(A (X)) =

cl|X|P
a9 — (cosciiXl _ sin ¢ | X ||
Py 4000 = (L = ST
sinc|[X|| _ 201 —cosc || XD \;y Y)
( x| X ) o
2(1 — cosc | X)) L(Y;, Y)), fori=2,.--,n.
cllX|f

Lete; = -ai—(A(X)) / “ a—a- AX)) ” According to Proposition 5.1 we have :
Vi Vi

(M lgi=jgn, then{Y,, -, Y,, LY, Y,),2L(Y,, Y, =2L(Y,, Y,)}
is orthonormal and {L(Y,, Y ), L(Y;, Y,;)> = %;

(D) for 1 £ i,j,h, k < n and different i, j, A, L(Y,;, Y ;) and L(Y,, Y,) are
orthogonal ; and therefore

e, = (cosc | XDY, + Gsinc | XPDL(Y,, Yy,
e; = (cos ¢ | X|)Y; + 2(sin }c | XDL(Y,, Y ), i=2,---,0.

Using Gauss formula we compute:
Ve, e) = —c(sinc || X|)Y, + clcosc [ X|DL(Y},Y,) ,
Vie,,e;) = —4c(sin ¢ | X|DY; + c(cos c | XIDL(Y,, Y ) , i=2,.---,n,
Vie,e;) = cL(Y;,Y,), 2Li+ji<n,
Ve, e) = —3csinc | XIDY, — $c(1 — cos ¢ || XNL(Y,, Y,) + cL(Y;, Y)),

i=2,---,n.

It is easy to verify that e,, - - -, e, form the required basis of T, ,,(M).
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Proposition 6.1. For m ¢ M and an orthonormal basis e, - - -, e, of T,.(M),
we have ;

(I)if 1<i=j<n, then e, ---, e, c Ve, e),2c7V(e;, ;) =
2c7V ey, e,)} is orthonormal and {V(e;, e;), V{e;, e;)> = #¢*;

(i) for 1 < i,j,h,k < n and different i, j, h, V(e;, e;) and Vie,,e,) are
orthogonal.

Proof. 1f m % m,, then the assertion follows from Lemma 6.1 and Pro-
position 5.1. If m = m,, then the assertion follows from the case for m # m,
and the continnity of the second fundamental tensor V.

Proposition 6.2. M has constant curvature Lct.

Proof. Let m e M. For any two orthonormal vectors Y, Z in the tangent
space T,,(M), we can extend them to an orthonormal basis of T,,(M), so that
by Proposition 6.1, <V(Y,Y), V(Z,Z)> = ict and (V(Y,2),V(Y,2)> = ic’.
Thus the sectional curvature of the plane spanned by Y, Z is ic¢%.

Let o (a, b) — M be a geodesic on M with unit tangent field 7. For e ¢ (a, b),
choose an open interval / in (@, b) containing e such that the restriction ¢ = a1
of « to I is univalent.

For any unit vector Y orthogonal to T(s(e)) in the tangent space T, (M),
we can extend 7, Y to a parallel base Y,, ---,Y, along ¢ with Y,(¢(?)) =
T(o(?)) for tel and Y,(¢(e)) = Y, that is, DY, =0 and Y,,..-, Y, are
linear independent along ¢, where D denotes the Riemannian cennection of
M. Since T(s(e)) and Y are orthonormal, T and Y, are orthonormal.

Let ¢ denote the Fermi coordinate map from an open neighborhood of ¢(I)
onto an open subset W of a Euclidean space R*, that is, for (x,, - -+, x,) ¢ W,

¢-l(x1> ) xn) = Exp-r(.z;) Z?:x xin‘(O'(xx)) s

where Exp,.., denotes the exponential map at ¢(x). Let Z, Z, denote the
restrictions of the coordinate fields &/dx,, d/dx, to the set of points
Exp, ., X, Y, (6(x,)), respectively. Then Z,(a(2)) = T(a(?)), Z,(c(1)) = Y, (a(?)),
and D, Z, = D, Z, along ¢. Since each x,~curve is a geodesic parametrized
by the arc length, D;,Z, = 0 and {Z,,Z,> = 1. Also we have D,<Z,,Z,> =
Dz, Zy,Z) +{Z,,Dz,2,) =Dz, 2,2,y = 3Z<Z,,Z,) = 0. Thus {Z,, Z,)
is constant along x,-curves. Since {Z,,Z,> = 0 on g, we have {Z,,Z,> =0,
and therefore W=Z,/||Z,| and Z, are orthonormal and W(e(?)) = T(a(2)).
By Proposition 6.1, <V(W, W), V(W,W)> = &, V(W,W),V(Z,, Z,)> = i,
VW, VW, Z)> = 0, VW, Z), VW, Z)> = ict.
Now

Dz._»Zx = (Zz(HZx”)W -+ HZUl DZaW’ ‘ Dzlz'_’ = HZIH DWZ'_’ .

Since (D, W,W) = $ZLW. W) =0 and (Dz,Z)(e(e)) = (D;,Z.)(a(e)) =
(D1Z,)(a(e)) = 0, we have (D, W)g(e)) = 0 and (DyZ)(a(e)) = 0. D, Z,
=0, (DyW)(a(e)) = (DrT)o(e)) = 0. Thus the Codazzi equation gives
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(nor ¥V wV(Z,, Z,))(a(e)) = (nor V, V(W, Z,))a(e)) ,
(nor ¥ ,,V(W, W))(a(e)) = (nor Py V(Z,, W))(a(e)) »

from which follows

VT, T))ale)), V(Y, Y))
= FTwVIW, W), V(Z,, Z,)(o(e)) = —VIW, W),V V(Z,, Z,)>(a(e))
= VW, W),V VW, Z))o(e)) = F VW, W), VW, Z))a(e)
=TwVW,Z),V(IW,Z))ale)) = ¥WV(W,Z,), VIW,Z)>)a(e)) =0 .

Similiarly,
VT, D) ale)), V(T(a(e)), Y)> =0,

LWL V(T, Tele)), Yy = —<V(T, 1),V 72Z,)(a(e))
= —V(T, 1), V(T,Z))a(e)) = 0.

Let e, = T(o(e)) and e,, - - -, e, be an orthonormal basis of T,..,(M). Then the
above argument shows that < V(T, T))(c(e)), V(e e;)> = 0 and
P LV(T, D)(o(e), Vs, )y = 0fori=2,-.-,n, and {FV(T, T))ale)),
Ve, + e)/v 2, (e; + e)/v2)y =0for2 < i j< nsothat{(F,V(T, T))
(6(e), Vies,e;)> = 0. Now we have (I VT, Dle), Vie,e)> =
HTW(T, 1), V(T, T)))o(e)) = 0. Thus

6.1) W VT, T))a(e)), Ve, e)> =0, fori,j=1,...,n.
Also we have
6.2) VT, TY)o(e),e> =0, fori=2,-.-,n.

Since {7 ,V(T, D) (ale)), > = —<V(T, T), VT (a(e)) = —<V(T, T),
V(T, T)>(e(e)) = —c?, we have

(6.3) P V(T, D)ale), e,y = —c* .

On the other hand, since M is a subset of the Euclidean space {m, +
DX X+ DX B(X, X ) X, x5 are real}, (FV(T, T))(a(e)), e:,V (e, e),
for i,j = 1, - - -, n, are vectors in the vector subspace generated by X,, - - -, X,
and B(X,,X,) for A,k =1,--.,n The dimension of this vector space is
in(n + 3) by Proposition 5.2. Thus it follows from Propositions 6.1 and 5.2
that {e), - -+, e,} U {V(e;, e): 1 <i<j< n}is abase, so that 7, V(T,T))
(¢(e)) is a linear combination of e, - - - ,¢, and V(e;,e;), 1 <i<j<n. By (6.1),
- (6.2), (6.3), we get
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VT, o) = —cte, = —c*T(ale)) .
Since e is arbitrary, V ;T = F,.V(T,T) = —c*T on «, i.e.,

dalt) n czda(z) -0
dar dt

b

whose solution is an arc of a circle with radius 1/c since we have the boundary
conditions:

do do d’a de
—— —— ) == T, =1, o, Yy = VT,T,T =O,
dt dt> < T> dr dt> < ( ) >
2 2
%’%> = VIV, = —c .

This proves Theorem 3 due to the compactness of M.

7. Proof of Theorem 4

Let K denote the positive constant sectional curvature of M, and f, the Jacobian
map of the isometry f. Define a real function G on M as (3.1), i.e., G(m) =
VX, X), V(X, X)> for meM and a unit vector X in the tangent space
T.(3). By Lemma 2.4, we see that G = ¢* for some nonnegative number c.
For any two orthonormal vectors X,Y in T,(M) we get K = (V(X, X),
VY, YY) — VX, Y), V(X,Y)) by the Gauss equation, and

(7.1) VX, Y, VX YD = VXX, VEX) ~K=c¢ —K

by Lemma 2.2, so that (V(X,7Y), V(X,Y)> is constant on T,,(M). Thus from
Lemma 2.8 either V(X,Y) = 0 or (V(X,Y), V(X,Y)> = 1c*. For otherwise,
there are orthonormal vectors X, X,, X, in T,(M) such that ¢ — K =
VX, XD, VX, X)) #= VX, X,), VX, X,)) = ¢ — K, which is impos-
sible. Therefore either ¢ = K or ¢* = 4K and ¢ > 0.

At first, we consider the case ¢ = K.

Proposition 7.1. Suppose ¢ = K > 0. Then f(M) is an open subset of an
n-dimensional sphere.

Proof. LetmeM, ande,, ---,e, be an orthonormal basis of 7, (M). It
follows from (7.1) that V(e;,e;) = 0 for 1 < i j < n. Consequently by
Lemma 2.2 we have Vie;, e;) = V(e e) ior i = 1, - - -, n. This implies f(M)
is an open subset of an n-dimensional sphere. ;

Now we consider the case ¢® = 4K. Let me M, and ¢,, - - -, &, be an ortho-
normal basis of T,(M). Then we have
(7.2) Ve, e)), Vies, e,)> = i forl<ixj<n

by (7.1),
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(7.3) Ve e), Vies e;)y = ict fori<isj<n:
by Lemma 2.2, and
(7.4) Ve, e, Vie,e)> =0 fori1<izj<n

by Lemma 2.2. If 1 <i,j,h < n and i, j, h are different, then by (7.1) we
have (V(e;, (e; + €,)/v2), Viess (e; + €,)/v 2)> = ic*. Applying (7.2),
(7.3) to the expansion of this equation yields

(7.5) Ve ey, Vieg, €,)> = 0, for different i, j, h.
It then follows from Lemma 2.6 that
(7.6) Ve, e, Vies,e,)> =0, for different i, j, A.

If 1 <i,j,h,k < rnandi,j, h,k are different, then we have <V{((e; + e,)/
V2, (ern+ e[V 2), Vile: + e)/V2, (en + €/ 2)y = }¢*. By Lemma
2.2, we se that

Vlei+e) V2, (e;+e)[v2),Vlen+ e[V 2, (en+ eV 2= 4.
Applying (7.3), (7.6) to the expansion of the last equation thus gives
a.7 Ve ey), Viey, er)) = 0, for different i,j, A, k.
Since f is an isometry, (7.2), - -+, (7.7) imply:
(7-8) if 1 S i * j S n, then {f*en Tty f*ena C_IV(ei: .ei)a 2C-JV(eia ej)
= 2¢"'V{(e,, e,)} is orthonormal and {V(e;, e,), V(e;, e,)> = ¢ ;
1.9 for 1 € i,j,h,k < n and different i, j, h, V(e;, e;) and V(e,, ;) are
orthogonal.

So we can define an £-sphere, say S,, through f(m) with radius 1/c¢ with
respect to the system {f.e;,c™'V(e; e,)}. For X e T,(M), let || X|| denote its
length. It follows from the definition of 2-sphere that S,, is the set of all points
A(X), c | X} < 2=z, defined by

_ sin ¢ || X || 1 — coscl|lXi
AX) = f(m} + Xl foX + —ExE VX, X), for X ¢ T,.(M)

with 0 < ¢ | X|| < 2z, A(0) = f(m). Thus §,, is independent of the choice of
the basis e, - - -, e, so that for each pe M we can define an n-dimensional
£L-sphere S,.

On the other hand, there is a real number 0 < cr < 2z such that the ex-
ponential map Exp,, at m maps
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U= {xe, + --- +x,‘e,,:(x§'+ e+ 22 <

diffeomorphically onto an open neighborhood of m, and f-Exp,, is one to one
on U. By Lemma 2.5 we thus have

sin C(.x2 4+ .0+ xf,,)l/z n
C(x§ ;— coe + xi)l/z ;1 Xff*ei

1 —cose(x®+ - + 222 &
= XXVei,e).
* G+ oo+ x2) i;Lllij( 7

foExpn 3, xies = fm) +

Hence f(Exp,, U) is an open subset of S,,. This proves the local theorem, since
Exp,, U is an open neighborhood of .

Let pe Exp,, U. Then f(p) ¢ S,. Let ¥V, denote the second fundamental
tensor of S,. If Y,,-.., Y, form an orthonormal basis of 7,(M), then
f+Yy --+, fY, form an orthonormal basis of T,,,(S,). Moreover, since
Exp, U is isometric to an open subset of S,, we see that V(Y,;, Y, =
Vife Y0, fiYy) for i,j=1,---,n, so that S, is the f2-sphere through f(p)
with radius 1/c with respect to the system {f,. Y, c™'V (f. . Y:, fL Y )}

Since S,, is compact and connected, every point g € S,, can be jointed to f(p)
by a geodesic (cf. [1, Theorem 15, Chapter 10]). By Theorem 3, S, satisfies
the assumptions of Theorem 1, in which f is the inclusion map. We use the
exponential map at f(p) to parametrize S,. According to Lemma 2.5, we see
that the Q-sphere through f(p) with radius 1/c with respect to the system
{Fo Y0, WV (£ Y, £ Y P} is just S,. Consequently, S, = S,. That is, S, is a
locally constant f£2-sphere. Since M is connected, all S, are the same, say S.
Then f(M) is an open subset of S.
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